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1 Introduction 
We shall discuss the equilibrium of fluid phases and the properties of the interfaces 
between them. We outline the theory that is current and see some of its successes, 
but the primary aim of this Lecture is to call attention to questions that are still 
unresolved. 

Of particular (but not exclusive) concern are the critical points of those phase 
equilibria. We recall briefly in Part 2 how the properties of fluids and their 
interfaces vary near critical points; i.e., what the critical indices (exponents) are. In 
Part 3 we describe the mean-field theory of inhomogeneous fluids, from which one 
obtains (approximately) the structure and thermodynamic properties of the 
interfaces between phases. Both these topics have been reviewed thoroughly and 
often,’-’ but we set out in Parts 2 and 3 the major ideas and formulae we need to 
refer to later, so that this Lecture may be self-contained. It is then through a 
sequence of special topics, which we treat in the subsequent parts, that we see what 
some of the theory’s successes and failures have been, what extensions of it are 
needed, and what some of the unsolved problems are. 

2 Phase Equilibria and their Critical Points 
In Figure la we see schematically the equilibrium between two phases a and p. This 
could be the equilibrium of a liquid p with its vapour a, or that between two 
incompletely miscible liquids. In Figure l b  is pictured the equilibrium of three 
phases, a, p, and y, separated in pairs by two interfaces. Here p and y may be two 
incompletely miscible liquids and a their common vapour, or all three may be 
liquids. 

The critical points of phase equilibria are limiting states in which phases become 
identical and the interface between them disappears. In Figure la these may be the 

* Delivered at a Symposium of the Faraday Division of the Royal Society of Chemistry on 10 December, 
1984 at Imperial College, London. 

J. S. Rowlinson and B. Widom, ‘Molecular Theory of Capillarity’ Oxford, 1982. ’ D. Jasnow, Rep. Prog. Phys., 1984, 47, 1059. 
K. Binder, in ‘Phase Transitions and Critical Phenomena’, Vol. 8, ed. C. Domb and J. L. Lebowitz, 
Academic Press, 1983, pp. 1-144,467474. 
J. S. Rowlinson, Chem. SOC. Rev., 1983, 12, 251. 
B. Widom, Furuduy Symp. Chem. SOC., 1981, 16, 7. 

121 



Phase Equilibrium and Interfacial Structure 

Figure 1 
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familiar critical points of liquid-vapour equilibrium or the consolute points of 
liquid-liquid equilibrium. In Figure 16, the state in which the two phases p and y 
become one at a critical point while the phase a remains in equilibrium with them 
but distinct, is called a critical endpoint; and there may similarly be a critical 
endpoint in which a and p become identical while in equilibrium with the distinct 
phase y. The limiting state in which the two critical endpoints occur 
simultaneously, so that all three of a, p, and y become one while both interfaces 
disappear, is called the tricritical point of the three-phase equilibrium. 

When the interface between two phases disappears at a critical point the tension 
(free energy per unit area) of that interface vanishes, and does so proportionally to a 
positive power of the distance from the critical point. If we express this distance, as 
is most often done, as the difference T, - T between the temperature T of the phase 
equilibrium and the critical temperature T,, then the surface (interfacial) tension <T 

behaves as 

as T- T,, where q, and p are positive parameters. We assume in ( 1 )  an ‘upper’ 
critical point, so that distinct phases exist for T < T,. For a ‘lower’ critical point we 
replace 1 - T/T, in (1) by T/T, - 1. 

For all ordinary critical points of two-phase equilibrium the exponent p has the 
universal value p = 1.26 (as closely as we can tell from current theory and 
experiment I),  but the coefficient oo is not universal. By the scaling theory of critical 

0 is related to the coherence length 6 of density or composition 
fluctuations, and also to the difference Ap in density or composition of the 
coexisting phases and to the compressibility (mechanical or osmotic) x of the 
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phases. Each of these also behaves as a power of 1 - T/T, as the critical point is 
approached, 

(We must be careful not to confuse the exponents p and y with the names of the 
phases p and y.) Here pc is the density or composition at the critical point; v, p, and 
y are universal exponents: v = 0.63, f3 = 0.325, y = 1.24; while go, B, and xo  are 
non-universal amplitudes. We shall later see the scaling-theory connections of cs to 
5, Ap, and x.  These will then imply relations among the universal exponents p, v, p, 
and y, as well as universal relations 'p7 among the otherwise non-universal 
amplitudes cso, to, B, and xo, and we shall examine these to see how well they hold in 
theoretical models and in experiment. 

A critical endpoint is an ordinary critical point. At an ap critical endpoint in the 
system in Figure lb, for example, the y phase is merely a spectator to the ap critical 
point and has no more effect on it than does the container, which is indeed yet 
another phase. Thus, (1)--(4) and the scaling relations among those quantities all 
continue to hold for the critical phases (but not for the spectator phase) at a critical 
endpoint, and they do so with the values of the exponents already quoted. A 
tricritical point, which, as we noted, is the coincidence of two critical endpoints and 
is a limit of three-phase coexistence (in contrast to an ordinary critical point or 
critical endpoint, which is a limit of two-phase coexistence), is different. While the 
relevant o,g, Ap, and x near a tricritical point are again as in (1)-(4) (with T, now 
the tricritical-point temperature), with exponents that are again universal, the 
values of the latter differ from those at an ordinary critical point: for tricritical 
points' p = 2, v = 1, p = 1/2, y = 2. 

We shall need to recall all this later, but for now we change the subject and 
outline the mean-field theory of inhomogeneous fluids. 

3 Mean-field Theory 
The structure and tension of interfaces may in principle be calculated from 
statistical mechanics once the intermolecular forces are known; but in practice this 
is done only approximately, most often with the van der Waals theory or one or 
another of its immediate extensions, which, collectively, are called the mean-field 
theory (or appr~ximation).'-~ 

We shall see the theory here in its simplest context, that of liquid-vapour 
equilibrium across a planar interface in a one-component fluid. We think of the 
molecules as attracting hard spheres of diameter b. The potential energy of 
attraction as a function of the distance r between centres is cp(r), with the convention 
(p(.o) = 0. With z the distance perpendicular to and through the interface, the 

D. Stauffer, M. Ferer, and M. Wortis, Phys. Rev. Lett., 1972, 29, 345. 
' D. Stauffer, Phys. Left. A ,  1973, 44, 261. 
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density p is z-dependent, p = p(z), as in Figure 2, varying from the bulk gas-phase 
density p( - co) = pe to the bulk liquid-phase density p(co) = p1 as z varies from 
- 00 to co. 

l iquid  

u 

I 

I 
I 

- -1- -1-- 

I I I I I-. I I I 

I I 
I I 
I I 
6 Pl 

Figure 2 

If we ignore correlations in the positions of the molecules other than the hard- 
sphere exclusions, the mean potential energy of attraction at any point Pa t  depth z is 

c 

J cp(r)p(z')d~, 

where dz is an element of volume at a variable point, z' is the depth at that point, r is 
the distance between that point and the point P, and the integration is over all such 
points outside a sphere of radius b about P (Figure 3). The mean-field 
approximation takes this potential energy to be the contribution the attractive 
forces make to the chemical potential of the fluid; there is imagined to be no 
entropic component of that contribution. At the same time the hard-sphere 
repulsions are taken to contribute phs[p(z)J to the chemical potential, where the 
function ph*(p) is the chemical potential of a fluid of the same hard spheres without 
attraction [q ( r )  = 01 at a uniform density p and at the temperature of the model 
fluid with attractions. If we represent by p [not to be confused with the exponent in 
(l)], with no superscript and no indicated argument, the uniform chemical 
potential of the two-phase fluid, then our approximation is 

r > b  

The terms on the right-hand side of ( 5 )  are separately z-dependent but their sum 
is not. The contributions of the hard-sphere repulsions and of the attractions are 
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Figure 3 

being taken to be separable (except for the hard-sphere exclusion in the range of 
integration) and additive. The former contribution is being taken to be local- 
phs(p) evaluated at the local p(z)-which is an approximation that would be 
accurate only if the density gradient dp(z)/dz was so small that p(z) was nearly 
constant over the distance 6. The effect of the attractions is treated in (5) as fully 
non-local-molecules at  all distances r from P for which q(r)  is sensibly different 
from zero contribute to the potential at P-but is otherwise approximated as that 
of a mean field. Equation (5) is a functional equation for the density profile p(z) in 
terms of the presumed known phs(p) and a given q(r).  

If the fluid were (hypothetically) constrained to be uniform with the density p its 
chemical potential, M(p), would by (5) be the analytic function 

in which a is van der Waals's a-parameter, 

In this mean-field theory the densities pg and p, of the bulk gas and liquid phases, at 
the chemical potential p, satisfy 

Also, in terms of this same function M(p) defined by (6), the functional equation (5) 
is 

P = M " l  + l, bcp(r)CP(z') - P(Z) ldT (9) 

The profile p(z) is the solution of (5) or (9) that satisfies p(-co) = pg and 
p(co) = pI when pg and p1 are solutions of (8). 

When p(z) is slowly varying (as it is near the critical point, where the interface is 
diffuse), (9) may be further approximated by expanding p(z') about z' = z and 
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truncating after second order. Then 

where 

m = -&l, br2q(r)dt 

[The coefficient of the first derivative, dp(z)/dz, vanishes by symmetry.] This is the 
simplest form of the van der Waals By analogy with the dynamics of a 
particle on a line, in which rn plays the role of the mass, z that of the time, p that of 
the co-ordinate, and M(p) - p that of the force, it is readily seen that the solution of 
(10) that satisfies p( f 00) = ps,, when these, in turn, satisfy (S), is as in Figure 2. 

The p(z) determined by (9) may be seen by the methods of the variational 
calculus also to be that which minimizes a functional 0, 

= J m  {FCP(41 + +P(Z> I, bCp(r>CP(Z’) - p(z)ldrIdz (12) 
- 0 0  

where the function F(p) is defined in terms of M(p) -p by 

This together with (8) amounts to Maxwell’s equal-areas construction, which de- 
termines the pe, p,, and p of the coexisting phases once the temperature is specified. 

The integrand in the z-integration in (12) is the mean-field theory’s 
approximation to the excess free-energy density due to the inhomogeneity, i.e., 
arising from the z-dependence of p. Then o, the integral over z, is the excess free 
energy per unit area, which is the interfacial tension; and the equilibrium profile 
p(z) is then that which minimizes the tension. 

This identification of the minimal o in (12) with the equilibrium surface tension is 
confirmed by noting that it satisfies the condition, required by the Gibbs 
adsorption equation, that d(o/T)/d(l/T) be the excess surface energy per unit area 
when the Gibbs dividing surface is that of vanishing adsorption. Since the minimal 
CJ is extremal with respect to variation of p(z), in differentiating it with respect to T 
we need consider only the explicit temperature dependence of the integrand in (12) 
at fixed p(z) and not the implicit dependence arising from the T-dependence of the 
equilibrium p(z) itself. Furthermore, [phs(p) - p ] / T  may be expressed as the 
difference between a function of p alone, independent of T, and a function of Talone, 
independent of p. With these two observations we have from (6)-(8) and ( 1 2 j (  14), 
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If we define a function pBI(z) to be pB when z is on the gas side of a dividing surface 
and pI when z is on the liquid side, then the location of the dividing surface of 
vanishing adsorption is determined by 

There is no reference in (15) to any dividing surface; but if we now specify (16) then 
(15) becomes 

d(a/T)/d( l /T) = *Im -CC J&~)CP(Z)P(Z’) - ~ ~ d 4 ~ 1 d . r  dz (17) 

which is manifestly the excess surface energy per unit area in mean-field 
approximation. 

In the same square-gradient approximation that led to (lo), and after integration 
by parts converts - p(z)d2p(z)/dz2 to [dp(z)/dzI2, the functional 0 in (12) becomes 

This is the ‘action’ in the dynamical analogy; the equilibrium 0 may then be equally 
well expressed as the integral of the ‘momentum’ over the ‘co-ordinate’, 

In much of the current work on inhomogeneous fluids (3, (9), or (12) (they are 
equivalent), or some direct extension of them, is the starting point. They are 
immediately generalizable to potentials that include external fields, to multi- 
component systems, and to inhomogeneities that are more than one-dimensional, 
where the densities depend on two or all three spatial co-ordinates. An important 
example of a two-dimensional inhomogeneity is the line in which three phases meet, 
where the several densities (in a multi-component system) depend on the two co- 
ordinates in any plane perpendicular to that line.’ 

While the generalizations to include external fields, to multi-component systems, 
and to multi-dimensional inhomogeneities are straightforward, other generaliza- 
tions are not, and may call for correction to the basic mean-field idea. Even then 
this remains a useful theoretical framework. In the remaining parts of this Lecture, 
as we treat a succession of problems and call attention to some unanswered 
questions, we refer repeatedly to these ideas and formulae, as well as to those in Part 
2 relating to critical points. 

4 Surface Tension Near Critical Points 
We may use the theory of the preceding section to discuss further the critical-point 
behaviour of surface tension, which we outlined in Part 2. Near the critical point the 
interface is diffuse and the density or composition gradients are small, so for many 
purposes the version of the theory in (18) and (19) is adequate. 
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When p(z) is the equilibrium profile the two terms SFdz and +mJ(dp/dz)2dz in 
(18) contribute equally to 6. Furthermore, on comparing this theory of interfacial 
structure with the Ornstein-Zernike theory of density or composition fluctuations 
near critical points,' one sees that the distance through the interface over which the 
variation of the composition from that of one bulk phase to that of the other mainly 
occurs-hence, the interfacial thickness, or the range of z over which the integrand 
in (18) differs sensibly from &is the same as the coherence (correlation) length 5 of 
the fluctuations in the bulk phases, to which we referred in Part 2. Then from (18) 
we estimate o - Km(Ap)*/s, where K is some dimensionless proportionality 
constant and where Ap (= p1 - pe for a liquid-vapour interface) is just the density 
or composition difference referred to in Part 2. From the Ornstein-Zernike theory 
of fluctuations one knows that near the critical point 

with x the compressibility, as in Part 2. Thus, 

Here 6 and x may be evaluated in either bulk phase; near the critical point 5 is the 
same in the two phases, as is x .  

If we take the mean-field theory literally we may evaluate Ap/p, and x from (6)- 
(8) and (14) [and the thermodynamic identity x-l = p2(ap/ap),J, m from ( l l ) ,  E, 
from (20), and 6 from (6), (13), and (19). We find ( l j ( 4 )  to hold with the classical 
values p = 3/2, v = 1/2, p = 1/2, and y = 1 of the exponents; we find explicit 
values of the coefficients oo, go, B, and xo; and for the dimensionless coefficient Kin 
(21), which is related to the coefficients in (1)-(4) by 

we find the explicit and universal value K = 1/6. 
These values of the exponents p, v, p, and y are not those quoted in Part 2; the 

mean-field theory does not give a quantitatively correct account of critical-point 
behaviour. We may reasonably suppose that if in (18) or (19) we used a function 
F(p) that we knew contained the right critical-point singularities, instead of that 
obtained from (6) via (13), we would get the right answers. [We would also need to 
replace the potential q(r )  in(l1) by - kTtimes the direct correlation function c(r) to 
obtain m correctly; k is Boltzmann's constant. It is with this m, more generally, that 
the interfacial thickness 5, or the correlation length 5 of the Ornstein-Zernike 
theory, is related to x by (20).) The result is again of the form (21), but now with 
non-classical values of the exponents p, v, p, and y, and with a generally different 
but again universal value of Krelated to the non-universal amplitudes oo, xo, B, and 
co by (22). From (21) we find the relation 

p =  - v + y + 2 p  (23) 
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among these four exponents, which we may verify holds with the values of the 
exponents quoted earlier. 

Fluctuation theory gives (sp)l = p2kTx/v for the density fluctuations 6p in a 
macroscopic sub-volume v of a fluid. By critical-point scaling theory the 
fluctuations in density in a volume g d  (d = dimensionality) in either of two 
coexisting, near-critical phases are of the order of the difference, Ap, of the densities 
of those phases. Thus, (Ap/pJ2 - K'kT, x/td with some universal proportionality 
constant K'. Also by the scaling theory the free energy associated with the 
elementary, coherent density fluctuation of coherence length 5 is kT; while the 
magnitude of the typical density fluctuation in the volume cd is Ap, so the free 
energy associated with it is at the same time of order 05"'. Hence, 06"' - K"kTc, 
with still another universal proportionality constant K". These give us the further 
exponent relations 

which are consistent with (23), and the further universal relations among non- 
universal amplitudes, 

which are consistent with (22) with K = K"/K'. The relations (24) with d = 3 may 
also be verified to hold with the quoted values of the exponents, which is an 
important success of the theory; but there is an as yet unresolved discrepancy 
between theory and experiment with respect to the universal relations among 
amplitudes that include 0,; i.e., in the values of K and K". Careful analyses of the 
experimental results '-' reveal that o 0 ~ , / B 2 C ,  and o o ~ ~ - ' / k T c  are indeed 
universal, but that their universal values are about twice as great as the theoretical 
estimates of these quantities ' ' -I3 in models whose critical properties have been 
thought to be identical with those of real fluids. The discrepancy is believed' to 
reside in 0,. Until it is resolved the present theory of surface tension near critical 
points cannot be accepted as final. 

We saw in Part 2 that the critical-point exponent for the vanishing of the 
interfacial tensions at a tricritical point is supposed theoretically to be p = 2, rather 
than p = 1.26 as at an ordinary critical point of two-phase equilibrium. Together 
with the other values of the tricritical-point exponents quoted in Part 2, the value 
p = 2 satisfies (23), and also (24) with d = 3. There has been no experimental 
determination of the exponent p for a tricritical point of ordinary three-phase 
equilibrium, so this theoretical prediction remains untested, except indirectly: the 

* M. B. Schneider, personal communication (1984). 
M. R. Moldover, Phys. Rev. A ,  1985, 31, 1022. 

K. Binder, Phys. Rev. A ,  1982, 25, 1699. 
E. Brezin and S. Feng, Phys. Rev. B, 1984, 29, 472. 

l o  H. L. Gielen, 0. B. Verbeke, and J. Thoen, J.  Chem. Phys., 1984, 81, 6154. 

l 3  K. K. Mon and D. Jasnow, Phys. Rev. A ,  1984, 30, 670. 
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equilibrium between the superfluid and non-superfluid liquid phases of 3He-4He 
mixtures is believed to be thermodynamically equivalent to three-phase 
equilibrium in classical (we shall say more about this for pure 4He in 
Part 5); and measurements of the interfacial tension near the liquid-liquid 
consolute point of those mixtures l6  are consistent with p = 2. 

In the phase equilibria of microemulsions one often finds a microemulsion, 
containing large amounts of both oil and water (or brine) in a homogeneous 
solution with a surfactant, in equilibrium with a phase that is almost pure oil, or one 
that is almost pure water (or brine-r with both, in a three-phase equilibrium. 
The composition of the microemulsion is far from that of the phase or phases with 
which it is in equilibrium, so in that sense one is far from a critical point; yet the 
interfacial tensions are extraordinarily low 17-19 (l~-’-lO-~ dyne cm-’), as when 
near a critical point in systems without surfactant. We may understand that ’O from 
the theory in Part 3. From (19), 

where E is a typical value of F in the interface, or even, for order-of-magnitude 
estimates, the maximum value. Here p is any measure of chemical composition 
while F(p), from (6) and (13), is as in Figure 4, with p, and pe the values of p in the 
bulk phases. Near a critical point F* and Ap are both small. In the microemulsion 
phase equilibria that we are contemplating Ap is not small, but F(p) is nevertheless 
extremely smal121 over the whole interval pa I p I pe; so p* is small, and thence 
also o. 

F ( p )  

Figure 4 

5 Non-critical Interfaces Near Critical Endpoints 
Let us imagine in Figure l b  that a is the vapour in equilibrium with two liquids p 
and y that are near their consolute point; or that a is a wall, or a solid adsorbent, 
while p and y are the liquid and vapour phases of a fluid near its critical point or 

l4 R. B. Griffiths, Phys. Rev. Left., 1970, 24, 715. 
R. B. Griffiths, Phys. Rev. B, 1973, 7, 545. 

l 6  P. Leiderer, H. Poisel, and M. Wanner, J. Low Temp. Phys., 1977, 28, 167. 
l 7  A. M. Bellocq, D. Bourbon, and B. Lemanceau, J.  Disp. Sci. Tech., 1981, 2, 27. 

l 9  A. M. Cazabat, D. Langevin, J. Meunier, and A. Pouchelon, Adv. Coll. Interf Sci., 1982, 16, 175. 
2o H. T. Davis and L. E. Scriven, presented at the 55th Annual Fall Technical Conference and Exhibition 

” Y. Talmon and S .  Prager, Nature, 1977, 267, 333. 

A. Pouchelon, D. Chatenay, J. Meunier, and D. Langevin, J. Coll. InterJ Sci., 1981, 82, 418. 

of the Society of Petroleum Engineers of the AIME, Dallas, Sept. 21--24, 1980. 
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again two liquid phases near a consolute point. In each case a is the spectator phase 
at the By critical point (critical endpoint; Part 2). The By interface is the one we 
discussed in Part 4, but here we concentrate on the non-critical ap or ay  interfaces, 
and we ask, in particular, how the By critical point manifests itself in the tensions of 
those interfaces . 

We may again use the theoretical framework of Part 3, now with F(p) as in 
Figure 5, or even an explicitly two-density version of the theory for the two- 

TC 
T +  

Figure 6 

TC 
T+ 

component liquid r n i x t ~ r e . ~ ~ * ~ ~  The results1*22*23 are as in Figure 6. Here G , , ~ ~  is 
the tension of the interface between the spectator phase a and the single Pr phase 
above the Py critical point at the critical density or composition, while oaB and oav 
are the separate tensions of the af3 and ay interfaces in the three-phase region below 
the By critical point. The latter tensions are related to each other and to the tension 
aBV of the critical interface by 

(Antonow’s rule l), as follows from Figure 5 and equation 19 (with ‘pg) and ‘pl’ taken 
to be pa, pe, or pV, as appropriate). 

Figure 6a is found when the fly critical point is incorporated in F(p) with classical 

l2 M. M. Telo da Gama, R. Evans, and I. Hadjiagapiou, Mol. Phys., 1984,52, 573. 
23 M. E. Costas, C. Varea, and A. Robledo, Phys. Rev. Letf., 1983, 51, 2394. 
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(mean-field-theory) exponents and Figure 66 when the exponents are non-classical. 
In each of the figures all three curves, o,,.,, oay, and G , , ~ ~ ,  are of the form 

in the immediate neighbourhood of the critical point, where p, as before, is the 
exponent in the critical surface tension oBy (so p = 3 / 2  or 1.26 in the classical and 
non-classical versions of the theory, respectively), and A is a common constant for 
all three curves, which are thus predicted to share a common tangent (the dashed 
line in each figure), while C is a different constant for each curve and of opposite 
sign on the two sides of the critical point. Thus, the deviations of the curves from 
their common tangent is predicted to be of one sign on one side of the critical point 
and of opposite sign on the other, as shown in the figures. This last feature, which 
appears as an inevitable and universal consequence of the theory, is not (or has not 
yet been) verified by experiment. There is an indication from theory that in Figure 
6b the curve oay may quickly turn upward on departing from the critical point and 
mostly lie above the tangent except very near the critical point itself. That could 
greatly complicate the interpretation of experiment. The experiments 24,25 have not 
yet been of sufficient precision to resolve these questions, but, disquietingly, in some 
cases all three curves seem to lie above their tangent. We shall shortly pose a related 
question about the surface tension of liquid helium near its lambda point. 
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Figure 7 

l4 N. Nagarajan, W. W. Webb, and B. Widom, J.  Chem. Phys., 1982,77, 5771. ’’ I. L. Pegg and I. McLure: I. L. Pegg, Ph.D. thesis, University of Sheffield, 1982. 
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Another prediction of theory that experiment has so far been too imprecise to test 
is the difference in the way curves of oa,Bv us. Tat fixed non-critical composition or 
density come in to the boundary of the three-phase region according to whether the 
fixed composition is on one side or the other of critical. In Figure 7 we see again the 
curves oav and oaB of Figure 6a, and also the curve there called oa,Bv, now drawn 
dashed and labelled p = pc. The other dashed curves are also the tensions of the 
a,Py interface in the two-phase region as functions of temperature, each now at a 
fixed, off-critical composition or density. 

Because of (27), when all three phases are in equilibrium the phase p wets 
perfectly, or spreads at, the ay interface. Then when Py is still a single, homogeneous 
phase in equilibrium with a, with a fixed composition on the y side of critical 
(p < pc, say, as in Figure 7), as T decreases and the phase-separation point is 
approached a premonitory layer of p forms at the interface with a and gradually 
logarithmically slowly-grows to macroscopic thickness as p comes ever closer to 
being stable in bulk. 1-3*5,26-29 In the limit there is then an infinite adsorption at the 
a y  interface, and so, according to the Gibbs adsorption equation, a (logarithmic) 
divergence in (do/~?p)~ = - (ap /a~ ) , (aT /ap) , (ao /aT)~  (now p is again 
chemical potential, not the surface-tension exponent), and so also in (do/aT),, 
since away from the critical point the other two factors are both finite. Thus, the 
dashed curve marked p < pc in Figure 7 comes into the limiting curve oav with 
infinite slope,26 as shown. On the /3 side of critical no premonitory layer of y forms 
at the interface with a because the ap interface is not wet by y, so the curve marked 
p > pc in Figure 7 comes into the limiting curve oaB with finite slope, as also shown. 
Direct measurements 24 of oa, have so far failed to reveal the predicted divergence 
of the slopes of the curves p < pc. 

The phenomenon we just discussed is not specifically connected to the critical 
point. On the contrary, as we see in Figure 7, the amplitude of the predicted 
singularity becomes smaller as the critical point is approached: the curve of oa* us. 
Tat p = pc shares a common tangent there with the curve oav us. T, as in Figure 6. 
On the other hand, when too far from the critical point we may be in a regime 26 in 
which oar < oaB + oBv instead of (27); then P no longer wets the ay interface, a 
premonitory p layer is no longer formed, and we would no longer expect the curves 
p < pc (Figure 7) to be of infinite slope where they meet the curve oey. 

Measurements of the adsorption-in effect, direct measurements of the 
derivatives of o-would probe such singularities more sensitively than do 
measurements of o itself. Adsorption measurements 30-33 have been called on to 

26 J. W. Cahn, J. Chem. Phys., 1977,66, 3667. 
2 7  R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B, 1982, 26, 5112. 
2 8  H. Nakanishi and M. E. Fisher, Phys. Rev. Lett., 1982, 49, 1565. 
2 9  A. Robledo, ‘Las Transiciones Interfaciales’, preprint (1 984). 
30 (a) D. Beaglehole, J. Chem. Phys.. 1980,73,3366; Phys. Left.  A, 1982,91,237; (b)  A. V. Mikhailov, V. L. 

Kuz’min, and A. I. Rusanov, Kolloid. Zhur., 1984, 46, 481. 
31 B. Heidel and G. H. Findenegg, J. Phys. Chem., 1984,88, 6575. 
32 J. Specovius and G. H. Findenegg, Ber. Bunsenges. Phys. Chem., 1980, 84, 690  S. Bliimel and G. H. 

33 G. H. Findenegg and R. Loring, J. Chem. Phys., 1984,81,3270; R. Loring and G. H. Findenegg, J.  Coll. 
Findenegg, Phys. Rev. Lett., 1985, 54, 447. 

Inter- Sci., 1981, 84, 355. 

133 



Phase Equilibrium and Interfacial Structure 

test another prediction of theory, this one concerned more specifically with 
behaviour near the critical point. If we follow oa,8v as a function of Ap at T = T, we 
find,’ as the counterpart of (28), 

0ol,87 0c + D*IAPl”8 (29) 

with J.I and P the critical-point exponents already defined and with D ,  two different 
constants according as Ap > 0 or Ap < 0. The singular terms IT - T,JM in (28) and 

in (29) are equivalent to each other via critical-point scaling [cf: equation 31, 
but refer to two different paths of approach to the critical point: the first to the path 
p = p, with Tvarying and the second to the path T = T, with p varying. Then the 
adsorption r = ( a o / a ~ . ~ ) ~  = (ac~/ap)~ p2x [from the identity x-’ = ~ ~ ( d p / d p ) ~  we 
referred to in Part 41 at the a,Py interface behaves as r - IAplcu-a-Y)/8 along the 
critical isotherm (T = Tc), from (29), (3), and (4); and thus, again by critical-point 
scaling, r - IT - Tclu-8-v on the path p = p,. By (23) this is 

r J T  - TJ- (V -B)  = IT  - ~ ~ 1 - 0 . 3  (30) 

a result first obtained by Fisher and de G e n n e ~ . ~ ~  
Here, too, experiment and theory are not yet in perfect accord: with p and y (or 

Py) the liquid phases of aniline-cyclohexane mixtures and with a their vapour, 
13eaglehole30“ found an exponent close to 0, more nearly consistent with a 
logarithmic divergence than with IT - Tcl-0.3, while in analogous systems 
Mikhailov et al. 30b found the exponent 0.35 & 0.15; with p and y (or Py) the fluid 
phases of pure ethylene, and with graphite as the a phase, Specovius and 
Findenegg 32 did indeed find the exponent -0.3; but these have been superseded by 
the more accurate measurements of Bliimel and Findenegg 32 with SF, in place of 
ethylene, and the result is an exponent closer to -0.5. For propane on two forms of 
graphite the exponents that are found are also in this range, -0.31 and -0.44 
(Findenegg and Loring33). The theory may well be right, but it is not yet proved. 

The surface tension of liquid helium near its lambda point TA falls in this class of 
phenomena, because that point is a critical point at which the superfluid order 
parameter yr-the analogue of our earlier Apf i r s t  appears; then, as T falls below 
T,, Iwl increases from 0, as in (3). There do not appear two spatially separated liquid 
phases P and y, so there is no identifiable Py interface; also there are no separate aP 

and ay interfaces: there is only one liquid-vapour interface below as well as above 

The appropriate theory3’ is one that recognizes explicitly both the density p, 
which differentiates liquid and vapour, and the superfluid order parameter yr, and is 
thus a two-component (or multi-component, depending on the dimensionality of 
w) generalization of the theory outlined in Part 3. The result is again as in (28). The 
helium lambda point is not exactly of the class of ordinary, two-phase critical 
points, so the value of the exponent p is slightly different from 1.26-now closer to 
1.35-but that is a minor difference. The mean-field theory 3 5  of this liquid-vapour 

TA. 

34 M. E. Fisher and P. G. de Gennes, C. R. Hebd. Seances Acad. Sci., Ser. B, 1978, 287, 207. 
35 P. Tavan and B. Widom, Phys. Rev. B, 1983, 27, 180. 
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interface again gives p = 3/2, but it gives a coefficient C in (28) that is non-zero only 
for T < T,; above T, there are only integer powers of T - TA in G. This is as in an 
earlier theory by S ~ b y a n i n , ~ ~  but Hohenberg 37 has argued that the singular term 
IT - T,lw should appear in CJ on both sides of the 1-point. The question is still 
unresolved theoretically. E~perimentally,~~ it appears that the singular term is 
present on both sides, and that the data are well fit with the power p = 1.35. 

Both by theory 3 s  and experiment 38 the curve CJ us. Tlies entirely above the line 
that is tangent to it at T = T,, as shown schematically in Figure 8. This differs from 
the result in Figure 6. There we distinguished two curves, G , ~  and oay, for T < T,, 
while here for T < TA there is only one, but that does not account for the 
difference, which is still not clearly understood. The difference is not due only to 
there being here two densities, p and w, instead of one, for some of the calculations 
for the ordinary critical endpoint were also based on two-density versions of the 
theory.22 What may be the significant difference between the former and present 
problems is that in helium the vapour phase is symmetrically related to the 
superfluid ‘phases’ below T, while at an ordinary critical endpoint the distinct 
phase is unsymmetrically related to the two near-critical phases; but if this is the 
explanation it has yet to be convincingly demonstrated. 

t 
Q 

T A 
T -  

Figure 8 

6 Long-range Forces 
Does it matter very much in the theory based on (9) or (12) whether the 
intermolecular potential q(r )  vanishes proportionally to l/r6, say, at large r, or is 

36 A. A. Sobyanin, Sou. Phys. JETP, 1972,34, 229. 
37 P. C. Hohenberg, J.  Low Temp. Phys., 1973, 13, 433. 

J. H. Magerlein and T. M. Sanders, Jr., Phys. Rev. Leu., 1976, 36, 258. 
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much shorter ranged than that? There have been some surprising answers. 
According to the mean-field theory it is only in an inhomogeneous system that it 

could matter. In a homogeneous fluid the theory reduces simply to the equation of 
state 

[cf: equation 61 with a given by (7). Thus, any two cp(r) that have the same integral 
outside hard cores of equal diameter b lead to the same equation of state; whether cp 
is long-ranged or short-ranged is irrelevant, as long as it is integrable. 

Even in an inhomogeneous system, if the square-gradient approximation (10) or 
(18) were sufficient, long-rangedness of cp(r) would again have no effect, provided 
only that cp were not so long-ranged that its second moment m failed to exist 
(equation 1 1 ) ;  i.e., provided that cp(r) vanished faster than l / r 5  (as l / r6 ,  for example) 
as r d  co. Then any two fluids in which the molecules had the same core 
diameter b and attractive potentials with the same integral and same second 
moment would behave identically, however different the ranges of those 
potentials. 

For an ordinary interface between two bulk phases, such as that whose profile is 
shown schematically in Figure 2, even when it is necessary for quantitative accuracy 
to go beyond the square-gradient approximation, neither the profile nor the tension 
is markedly affected by the range of cp as long as a and m are f i ~ e d . ~ ~ . ~ '  To be sure, 
the rapidity of approach of p(z) to pe or p1 as lzl- co does depend on the range of 
cp. When cp(r) is of strictly finite range [i.e., when cp(r) 3 0 for r greater than some 
fixed, microscopic distance], or when it vanishes exponentialy rapidly as r --+ 00, 
then p(z) - ps or p1 - p(z) vanishes exponentially rapidly as 121- co, 
proportionally to exp( - lz l / t ) ,  with 5 the correlation length we encountered earlier, 
which, near the critical point, is related to the second moment of cp and to the 
compressibility x by (20). When cp(r), instead, vanishes proportionally to - cpo/r" for 
large r, with some constant cpo > 0 and with n > 3, 

as lzl+ co, where g,l means either g or 1 consistently, and where pg,, and xg,, are 
the density and compressibility of the bulk phases. Thus, the decay is as l/lzJ"3 
instead of exponential; but if n > 5 (so that cp has a second moment), by the time the 
power-law decay is perceptibly different from the exponential, p(z) is already so 
close to its asymptotic limit of ps or p1 that the difference is of little consequence. 

It is entirely different for a slab with two interfaces, as when in Part 5, for 
example, we dealt with a premonitory layer of a wetting phase p, let us say of 
thickness 1, at an ay  interface (Figure 9). The importance of long-range forces in 
such geometries has been emphasized by de G e n n e ~ ; ~ '  in particular, the range of 
the forces is found42-57 to be crucial in determining the order of the 'wetting 

j 9  J. A. Barker and J.  R. Henderson, J.  Chem. Phys., 1982, 76, 6303. 
*O B. Q. Lu, R. Evans, and M. M. Telo da Gama, preprint (1985). 
41 P. G. de Gennes, J.  Phys. (Paris), Lett., 1981, 42, L-377. 
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7 which is a transition in the structure of the cry interface transition’ 26-29.58-60 

between microscopic and macroscopic thicknesses 1 (Figure 9). 
a 

Y 
Figure 9 

Tarazona et ul.42-44 have made the important remark that when (9) (or its 
generalization for multi-component systems) is applied to the configuration of 
Figure 9, and the equilibrium profiles p(z) are found by solving (9) iteratively, the 
solution converges quickly, after only a few iterations, to its final form at the ap and 
Py faces of the p film, but only very slowly to the final equilibrium thickness 1. This 
then allows one to separate the short-range and long-range aspects of the film 
structure, and to define an effective film free-energy per unit area, o(Z), by first 
specifying an F(p) suitable to the problem at hand and then substituting for p(z) on 
the right-hand side of (12) a roughly correct form with variable thickness 1. The 
equilibrium 1 is then that which minimizes o(Z). In this way4244*59*60 problems 
such as that of the wetting transition are reduced to much simpler problems of one, 
or very few, degrees of freedom. It is related also (although it is more 
phenomenological and less microscopic) to the way one constructs an interface 
Hamiltonian,61 which may again be a function o(Z), or a functional o[l(x,y)]  with x 
and y the co-ordinates in a plane parallel to the interfaces in Figure 9. 

*’ P. Tarazona and R. Evans, Mol. Phys., 1983, 48, 799. 
43 P. Tarazona, M. M. Telo da Gama, and R. Evans, Mol. Phys., 1983, 49, 283. 
** P. Tarazona, M. M. Telo da Gama, and R. Evans, Mol. Phys., 1983,49, 301. 
*’ P. G. de Gennes, C. R. Hebd. Seances Acad. Sci., (II), 1983, 297, 9. 
*6 E. H. Hauge and M. Schick, Phys. Rev. B, 1983, 27, 4288. 
47 M. P. Nightingale, W. F. Saam, and M. Schick, Phys. Rev. Lett., 1983, 51, 1275. 
* 8  M. P. Nightingale, W. F. Saam, and M. Schick, Phys. Rev. B, 1984, 30, 3830. 
49 R. Lipowsky and D. M. Kroll, Phys. Rev. Lett., 1984,52,2303; D. M. Kroll and T. F. Meister, Phys. Rev. 

B, 1985, 31, 392. 
” G. F. Teletzke, L. E. Scriven, and H. T. Davis, J. Chem. Phys., 1982, 77, 5794. 

G. F. Teletzke, L. E. Scriven, and H. T. Davis, J. Chem. Phys., 1983, 78, 1431. 
” R. E. Benner, Jr., G. F. Teletzke, L. E. Scriven, and H. T. Davis, J. Chem. Phys., 1984, 80, 589. 
” V. Privman, J. Chem. Phys., 1984, 81, 2463. 
’* M. P. Nightingale and J. 0. Indekeu, Phys. Rev. Lett., 1985, 54, 1824. 
” S. Dietrich, M. P. Nightingale, and M. Schick, preprint (1984). 
” S. Dietrich and M. Schick, Phys. Rev. B, 1985,31, 4718. 
” C. Ebner, W. F. Saam, and A. K. Sen, preprint (1984). 
’* D. E .  Sullivan, Faruduy Symp. Chem. Soc., 1981, 16, 191. ’’ D. E. Sullivan and M. M. Telo da Gama, in ‘Fluid Interfacial Phenomena’, ed. C. A. Croxton, Wiley, 

6o P. G. de Gennes, ‘Wetting: Statics and Dynamics’, preprint (1984). 
61 D. A. Huse, W. van Saarloos, and J. D. Weeks, preprint (1984). 

1985. 
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We may illustrate this procedure by an example in which the p film of Figure 9 
would not be quite stable as a bulk phase, there being some positive 
undersaturation-free-energy per unit volume, say f, which would vanish if the film 
were stable in bulk. We consider the example in which the mass density dB of the 
wetting film is greater than the density d, of the y phase,62 which is itself of 
macroscopic thickness H 9 I (Figure 10); then f =  (do - dy)gH with g the 
acceleration of gravity. For simplicity, and just as a schematic illustration of the 
method, let us assume a common q(r )  for all the interactions and then take the 
number densities pa, P o ,  and p, to be such that is the intermediate one, say 
p a  < 0 6  < pr (unlike the mass densities, which are in the order da < dy < do) .  In 
this way the bulk phases are ordered a, y, p in the gravitational field and yet the 
interfacial energetics are such as to favour the order a, 0, y. This leads to the 
configuration in Figure 10 with a microscopic but positive I, as we shall see. 

a 

B 
z = o  
z = l  z 

c 
Y 

z = I + H  

B 
Figure 10 

We now take (12) to be 

o(l) = P  + +Jm J cpWCP(Z')  - P(Z)lP(Z)dT dz (33) 
-a, r > b  

with p(z) = pa for -a < z < 0, p(z) = for 0 < z < 1, and p(z) = p, for 
1 < z < co, as is appropriate for the asymptotic limit of a macroscopically thick y 
phase ( H -  00). Then from (33), 

where 

j(r) - - 2 ~ c p o / ( n  - 2)(n - 3)(n - 4)1& (36) 

6 2  OD. Kwon, D. Beaglehole, W. W. Webb, B. Widom, J. W. Schmidt, J. W. Cahn, M. R. Moldover, and B. 
Stephenson, Phys. Rev. Lett., 1982, 48, 185. 
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as I----, 00. The o(l) of (34), with thisj(l) and n = 6, is as given by de Gennes41 
(See also Tarazona et ~ l . , ~ ~  Sullivan and Telo da Gama," Dzyaloshinsky et ~ l . , ~ ~ "  
and Kuni et ~ 1 . ~ ~ ~ ) .  Since p6 is here assumed intermediate between pa and pv, the 
coefficient ofj(l) in (34) is negative, hence l/r" appears in o(l) in the large-l limit 
with positive coefficient (because cpo > 0 and n > 4). Thus, whenfis small o(l) has 
its minimum at a large but microscopic 1, 

With n = 6 andf = (d6 - d,)gH this, too, is as found by de Genne~ .~ '  
When three bulk phases are in equilibrium and their tensions are related by (27), 

one of them, as we saw, spreads at the interface between the other two (the interface 
of highest tension), which, with 1 now macroscopic, is the configuration in Figure 9. 
But when the tensions are related by ouv < csa6 + 06v instead of by (27), as already 
remarked, this is not so; instead, the three phases meet with non-zero (and non- 
1800) contact angles at a common line of three-phase contact.'*64 (One of the 
contact angles becomes 180" in the limiting case in which one phase is a non- 
deformable solid.) De Gennes 6o has called attention to the potential importance of 
long-range forces for the structure and energetics of such a three-phase line. There 
are not yet any calculations comparable to those of Tarazona et al.,42-44 say, to 
demonstrate that the properties of that line are qualitatively different for long- 
range forces from what they are for short-range forces (although, in principle, 
calculations like those of Benner et ~ 1 . ~ ~  would be able to do that). The point, again, 
is not merely to show that different cps lead to different results but that long- 
rangedness per se has unique implications; i.e., that even if a short- and a long- 
ranged q(r )  shared the same zeroth and second moments a and m they would still 
have qualitatively different consequences. That surprising result has been amply 
demonstrated for films and is thus plausible also for the three-phase line, but the 
question is still open. 

7 Conclusion 
Although we have along the way seen some of the successes of current theories of 
phase equilibrium and interfaces, the primary purpose of this Lecture has been to 
call attention to discrepancies between theory and experiment, to key theoretical 
predictions that are still untested by experiment, and to important questions that 
are still unsettled even by theory. These have included the problem of the coefficient 
00 in the surface tension near the critical point (defined by equation 1); the critical- 
point exponent for the vanishing of the interfacial tensions at a tricritical point; the 
signs of the singular terms in the tension of the non-critical interface near a critical 
endpoint, and the critical-point exponent for the divergence of the adsorption at 
that interface; the way in which a growing layer of a phase p at the interface between 
two other phases a and y manifests itself in the tension of the ay interface; the form 

6 3  (a)  I. E. Dzyaloshinsky, E. M. Lifshitz, and L. P. Pitaevsky, Adv. Phy., 1961, 10, 165; (6) F. M. Kuni, 

64 R. E. Benner, Jr., L. E. Scriven, and H. T. Davis, Furuduy Symp. Chem. Sor., 1981, 16, 169. 
A. I. Rusanov, and E. N. Brodskaya, Colloid. J .  USSR (Engl. Trunsl.), 1969, 31, 691. 
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of the singularity in the surface tension of liquid helium at its lambda point; and the 
effect of long-ranged interactions on the structure and energetics of the line of three- 
phase contact. 

This has left untouched two further vast areas of inquiry about interfaces, each 
with important unsolved problems of its own. One of these is the necessary 
modification 65-70 of the mean-field theory to take account of long-wavelength 
capillary waves, and includes the problem of whether there can be a unique 
deconvolution of an interfacial profile into capillary-wave and ‘intrinsic’ 
s t r u ~ t u r e . ~ ’ - ~ ~  The other is the problem of curved surfaces-the surfaces of drops 
and bubbles of finite size-on which there has been much recent p r o g r e s ~ , ~ * ~ ~ - ’ ~  
but where there remain some paradoxes and uncertainties. Clearly our subject is 
still a lively one, and has enough unanswered questions to stay that way for a long 
time. 
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